Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.825
Filtrar
1.
BMC Plant Biol ; 24(1): 248, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580955

RESUMO

BACKGROUND: Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Egito , Melhoramento Vegetal , Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467927

RESUMO

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Assuntos
Arabidopsis , Ascomicetos , Vitis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ubiquitinas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
3.
New Phytol ; 242(1): 247-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358035

RESUMO

Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Ascomicetos/fisiologia , Brassica napus/genética , Virulência/genética , Expressão Gênica , Doenças das Plantas/microbiologia
4.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279360

RESUMO

The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.


Assuntos
Ascomicetos , Cicer , Cicer/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia
5.
New Phytol ; 241(5): 2243-2257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840369

RESUMO

Lichens are exemplar symbioses based upon carbon exchange between photobionts and their mycobiont hosts. Historically considered a two-way relationship, some lichen symbioses have been shown to contain multiple photobiont partners; however, the way in which these photobiont communities react to environmental change is poorly understood. Lichina pygmaea is a marine cyanolichen that inhabits rocky seashores where it is submerged in seawater during every tidal cycle. Recent work has indicated that L. pygmaea has a complex photobiont community including the cyanobionts Rivularia and Pleurocapsa. We performed rRNA-based metabarcoding and mRNA metatranscriptomics of the L. pygmaea holobiont at high and low tide to investigate community response to immersion in seawater. Carbon exchange in L. pygmaea is a dynamic process, influenced by both tidal cycle and the biology of the individual symbiotic components. The mycobiont and two cyanobiont partners exhibit distinct transcriptional responses to seawater hydration. Sugar-based compatible solutes produced by Rivularia and Pleurocapsa in response to seawater are a potential source of carbon to the mycobiont. We propose that extracellular processing of photobiont-derived polysaccharides is a fundamental step in carbon acquisition by L. pygmaea and is analogous to uptake of plant-derived carbon in ectomycorrhizal symbioses.


Assuntos
Ascomicetos , Cianobactérias , Líquens , Ascomicetos/fisiologia , Líquens/genética , Cianobactérias/genética , Simbiose , Filogenia
6.
J Exp Bot ; 75(1): 180-203, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611210

RESUMO

Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/metabolismo , Giberelinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Hormônios/metabolismo , Ciclo Celular
7.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
8.
Pest Manag Sci ; 80(4): 2011-2020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105413

RESUMO

BACKGROUND: Wheat powdery mildew, caused by the biotrophic pathogen Blumeria graminis f. sp. tritici (Bgt) is a serious fungal disease. Natural metabolites produced by microorganisms are beneficial biological control agents to inhibit Bgt. In the present study, we investigated the effects of Aspergillus chevalieri BYST01 on wheat powdery mildew. RESULTS: A strain isolated from the termite was identified as A. chevalieri BYST01 by morphological characteristics and phylogenetic analysis. The fermentation broth of BYST01 showed good biocontrol effect on the Bgt in vivo with the control efficiencies of 81.59% and 71.34% under the protective and therapeutic tests, respectively. Four known metabolites, including the main compound physcion (30 mg/L), were isolated from the fermentation broth of BYST01 extracted with ethyl acetate. Importantly, under a concentration of 0.1 mM, physcion repressed conidial germination of Bgt with an inhibition rate of 77.04% in vitro and showed important control efficiencies of 80.36% and 74.64% in vivo under the protective and therapeutic tests, respectively. Hence, the BYST01 showed important potential as a microbial cell factory for the high yield of the green natural fungicide physcion. Finally, the biosynthetic gene clusters responsible for physicon production in BYST01 was predicted by analyzing a chromosome-scale genome obtained using a combination of Illumina, PacBio, and Hi-C sequencing technologies. CONCLUSION: Aspergillus chevalieri BYST01 and its main metabolite physcion had a significant control effect on wheat powdery mildew. The biosynthesis pathway of physcion in BYST01 was predicted. © 2023 Society of Chemical Industry.


Assuntos
Ascomicetos , Aspergillus , Emodina/análogos & derivados , Isópteros , Animais , Ascomicetos/fisiologia , Triticum/genética , Filogenia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Resistência à Doença/genética
9.
Nucleic Acids Res ; 52(3): 1226-1242, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38142443

RESUMO

Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.


Assuntos
Ascomicetos , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Humanos , Evolução Biológica , Aberrações Cromossômicas , Cromossomos , Evolução Molecular , Virulência , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia
10.
Nat Commun ; 14(1): 6972, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914724

RESUMO

Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.


Assuntos
Ascomicetos , Líquens , Simbiose/fisiologia , Ascomicetos/fisiologia , Diferenciação Celular , Filogenia
11.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003642

RESUMO

Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.


Assuntos
Ascomicetos , Ipomoea batatas , Ascomicetos/fisiologia , Ipomoea batatas/genética , Ceratocystis , Sacarose/farmacologia
12.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003294

RESUMO

Aureobasidium pullulans (A. pullulans), a commonly found yeast-like fungus, exhibits adaptability to a wide range of pH environments. However, the specific mechanisms and regulatory pathways through which A. pullulans respond to external pH remain to be fully understood. In this study, we first sequenced the whole genome of A. pullulans using Nanopore technology and generated a circle map. Subsequently, we explored the biomass, pullulan production, melanin production, and polymalic acid production of A. pullulans when cultivated at different pH levels. We selected pH 4.0, pH 7.0, and pH 10.0 to represent acidic, neutral, and alkaline environments, respectively, and examined the morphological characteristics of A. pullulans using SEM and TEM. Our observations revealed that A. pullulans predominantly exhibited hyphal growth with thicker cell walls under acidic conditions. In neutral environments, it primarily displayed thick-walled spores and yeast-like cells, while in alkaline conditions, it mainly assumed an elongated yeast-like cell morphology. Additionally, transcriptome analysis unveiled that A. pullulans orchestrates its response to shifts in environmental pH by modulating its cellular morphology and the expression of genes involved in pullulan, melanin, and polymalic acid synthesis. This research enhances the understanding of how A. pullulans regulates itself in diverse pH settings and offers valuable guidance for developing and applying engineered strains.


Assuntos
Ascomicetos , Ascomicetos/fisiologia , Saccharomyces cerevisiae/metabolismo , Melaninas/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Fermentação
13.
BMC Plant Biol ; 23(1): 479, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807039

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) is the third largest source of vegetable oil in the world, and Sclerotinia sclerotiorum (Lib.) is a major soil-borne fungal plant pathogen that infects more than 400 plant species, including B. napus. Sclerotinia stem rot caused an annual loss of 10 - 20% in rapeseed yield. Exploring the molecular mechanisms in response to S. sclerotiorum infection in B. napus is beneficial for breeding and cultivation of resistant varieties. To gain a better understanding of the mechanisms regarding B. napus tolerance to Sclerotinia stem rot, we employed a miRNAome sequencing approach and comprehensively investigated global miRNA expression profile among five relatively resistant lines and five susceptible lines of oilseed at 0, 24, and 48 h post-inoculation. RESULTS: In this study, a total of 40 known and 1105 novel miRNAs were differentially expressed after S. sclerotiorum infection, including miR156, miR6028, miR394, miR390, miR395, miR166, miR171, miR167, miR164, and miR172. Furthermore, 8,523 genes were predicted as targets for these differentially expressed miRNAs. These target genes were mainly associated with disease resistance (R) genes, signal transduction, transcription factors, and hormones. Constitutively expressing miR156b (OX156b) plants strengthened Arabidopsis resistance against S. sclerotiorum accompanied by smaller necrotic lesions, whereas blocking miR156 expression in Arabidopsis (MIM156) led to greater susceptibility to S. sclerotiorum disease, associated with extensive cell death of necrotic lesions. CONCLUSIONS: This study reveals the distinct difference in miRNA profiling between the relatively resistant lines and susceptible lines of B. napus in response to S. sclerotiorum. The identified differentially expressed miRNAs related to sclerotinia stem rot resistance are involved in regulating resistance to S. sclerotiorum in rapeseed by targeting genes related to R genes, signal transduction, transcription factors, and hormones. miR156 positively modulates the resistance to S. sclerotiorum infection by restricting colonization of S. sclerotiorum mycelia. This study provides a broad view of miRNA expression changes after S. sclerotiorum infection in oilseed and is the first to elucidate the function and mechanism underlying the miR156 response to S. sclerotiorum infection in oilseed rape.


Assuntos
Arabidopsis , Ascomicetos , Brassica napus , Brassica rapa , MicroRNAs , Brassica napus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Arabidopsis/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Brassica rapa/genética , Ascomicetos/fisiologia , Hormônios/metabolismo , Fatores de Transcrição/metabolismo
14.
Plant Physiol Biochem ; 203: 108067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832369

RESUMO

Agronomic crops can benefit from the application of nanoscale materials in order to control phytopathogens and improve plant growth. Bipolaris sorokiniana, a soil- and seed-borne fungus, causes severe yield losses in wheat. In order to determine the physio-chemical changes in wheat under biotic stress of B. sorokiniana, the current study aimed to synthesis silver nanoparticles (AgNPs) using Allium sativum bulb extract. Herein, we applied the silver nanoparticles (AgNPs) as a foliar spray on two wheat varieties (Pakistan-2013, and NARC-2011) at the concentrations of 10, 20, 30, and 40 mg/L to suppress B. sorokiniana. Among all the applied concentrations of AgNPs, the 40 mg/L concentration demonstrated the most effective outcome in reduction of the intensity of spot blotch and improved the morphological, physiological, biochemical parameters, as well as antioxidant activity in wheat plant. Foliar application of AgNPs at 40 mg/L Pakistan-2013 and NARC-2011 wheat varieties significantly increased chlorophyll a 84.8% and 53.4%, chlorophyll b 28.9% and 84.3%, total chlorophyll content 294.3% and 241.2%, membrane stability index 7.5% and 6.1%, relative water contents 25.4% and 10.5%, proline content 320.5% and 609.9%, and soluble sugar content 120% and 259.4%, respectively, compared to control and diseased plant. This is the first study provides important insights into the role of phyto-mediated AgNPs in increasing resistant of wheat infected with B. sorokiniana. These findings offers valuable new insights that may be useful for reducing disease incidence in wheat fields.


Assuntos
Ascomicetos , Nanopartículas Metálicas , Triticum/fisiologia , Prata/farmacologia , Ascomicetos/fisiologia , Clorofila A
15.
Microb Pathog ; 184: 106359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716624

RESUMO

Powdery mildew in cucumber is caused by the Podosphaera xanthii. No strategy for improving disease resistance can be successful in the absence of thorough insights into the physiological and biochemical responses of cucumber plants to powdery mildew. Therefore, a field experiment was executed to evaluate five commercial cucumber varieties (V1: Dynasty, V2: Long green, V3:Desi Kheera, V4:Thamin II, V5:Cucumber 363) for their inherent immunity to powdery mildew. Upon inoculating cucumber plants with Podosphaera xanthii, we noted differential responses among the varieties. Compared to other varieties, V1 and V2 showed higher values (P ≤ 0.05) for chlorophyll-a under control and pathogen-attacked plants respectively. The minimum value of anthocyanin content (-53.73%) was recorded in V3 as compared to other varieties post pathogen infection. All pathogen-infected cucumber varieties showed a considerable (P ≤ 0.05) loss in flavonoid content except V2. The maximum destruction for Phenolics under powdery mildew (179%) were recorded in V4, whereas V1 exhibited maximum phenolic content under control conditions. In pathogen-infected plants, the minimum AsA was recorded in V5 as compared to all other varieties. Pathogen invasion impacted significantly (P ≤ 0.05) the activity of superoxide dismutase (SOD). Besides, cucumber plants after pathogen inoculation resulted in a considerable (P ≤ 0.05) increase of peroxidase (POD) activity in V1 (5.02%), V2 (7.5%), and V3 (11%) in contrast to V4. Our results confirmed that cucumber varieties perform differently, which was brought on by distinct metabolic and physiological modifications that have an impact on growth and development. The changes in different attributes were correlated with cucumber resistance against powdery mildew. The results would help us fully harness the potential of these varieties to trigger disease management initiatives and defense responses.


Assuntos
Ascomicetos , Cucumis sativus , Ascomicetos/fisiologia , Resistência à Doença
16.
Appl Environ Microbiol ; 89(9): e0098323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655869

RESUMO

The asexual sporulation of filamentous fungi is an important mechanism for their reproduction, survival, and pathogenicity. In Aspergillus and several filamentous fungi, BrlA, AbaA, and WetA are the key elements of a central regulatory pathway controlling conidiation, and MedA is a developmental modifier that regulates temporal expression of central regulatory genes; however, their roles are largely unknown in nematode-trapping (NT) fungi. Arthrobotrys oligospora is a representative NT fungus, which can capture nematodes by producing adhesive networks (traps). Here, we characterized the function of AoMedA and three central developmental regulators (AoBrlA, AoAbaA, and AoWetA) in A. oligospora by gene disruption, phenotypic comparison, and multi-omics analyses, as these regulators are required for conidiation and play divergent roles in mycelial development, trap formation, lipid droplet accumulation, vacuole assembly, and secondary metabolism. A combined analysis of phenotypic traits and transcriptome showed that AoMedA and AoWetA are involved in the regulation of peroxisome, endocytosis, and autophagy. Moreover, yeast one-hybrid analysis showed that AoBrlA can regulate AoMedA, AoAbaA, and AoWetA, whereas AoMedA and AoAbaA can regulate AoWetA. Our results highlight the important roles of AoMedA, AoBrlA, AoAbaA, and AoWetA in conidiation, mycelia development, trap formation, and pathogenicity of A. oligospora and provide a basis for elucidating the relationship between conidiation and trap formation of NT fungi. IMPORTANCE Conidiation is the most common reproductive mode for many filamentous fungi and plays an essential role in the pathogenicity of fungal pathogens. Nematode-trapping (NT) fungi are a special group of filamentous fungi owing to their innate abilities to capture and digest nematodes by producing traps (trapping devices). Sporulation plays an important role in the growth and reproduction of NT fungi, and conidia are the basic components of biocontrol reagents for controlling diseases caused by plant-parasitic nematodes. Arthrobotrys oligospora is a well-known NT fungus and is a routinely used model fungus for probing the interaction between fungi and nematodes. In this study, the functions of four key regulators (AoMedA, AoBrlA, AoAbaA, and AoWetA) involved in conidiation were characterized in A. oligospora. A complex interaction between AoMedA and three central regulators was noted; these regulators are required for conidiation and trap formation and play a pleiotropic role in multiple intracellular activities. Our study first revealed the role of AoMedA and three central regulators in conidiation, trap formation, and pathogenicity of A. oligospora, which contributed to elucidating the regulatory mechanism of conidiation in NT fungi and helped in developing effective reagents for biocontrol of nematodes.


Assuntos
Ascomicetos , Nematoides , Animais , Metabolismo Secundário , Ascomicetos/fisiologia , Saccharomyces cerevisiae
17.
Mol Plant Microbe Interact ; 36(12): 764-773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581456

RESUMO

Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética
18.
J Exp Bot ; 74(18): 5620-5634, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37480841

RESUMO

Rapeseed (Brassica napus) is a major edible oilseed crop consumed worldwide. However, its yield is seriously affected by infection from the broad-spectrum non-obligate pathogen Sclerotinia sclerotiorum due to a lack of highly resistant germplasm. Here, we identified a Sclerotinia-resistant and light-dependent lesion mimic mutant from an ethyl methanesulfonate-mutagenized population of the rapeseed inbred Zhongshuang 11 (ZS11) named lesion mimic mutant 1 (lmm1). The phenotype of lmm1 is controlled by a single recessive gene, named LESION MIMIC MUTANT 1 (LMM1), which mapped onto chromosome C04 by bulked segregant analysis within a 2.71-Mb interval. Histochemical analysis indicated that H2O2 strongly accumulated and cell death occurred around the lesion mimic spots. Among 877 differentially expressed genes (DEGs) between ZS11 and lmm1 leaves, 188 DEGs were enriched in the defense response, including 95 DEGs involved in systemic acquired resistance, which is consistent with the higher salicylic acid levels in lmm1. Combining bulked segregant analysis and transcriptome analysis, we identified a significantly up-regulated gene, BnaC4.PR2, which encodes ß-1,3-glucanase, as the candidate gene for LMM1. Overexpression of BnaC4.PR2 may induce a reactive oxygen species burst to trigger partial cell death and systemic acquired resistance. Our study provides a new genetic resource for S. sclerotiorum resistance as well as new insights into disease resistance breeding in B. napus.


Assuntos
Ascomicetos , Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Melhoramento Vegetal , Brassica rapa/genética , Ascomicetos/fisiologia , Resistência à Doença/genética
19.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37481697

RESUMO

Truffle growers devote great efforts to improve black truffle productivity, developing agronomic practices such as 'truffle nests' (peat amendments that are supplemented with truffle spore inoculum). It has been hypothesized that improved fruiting associated with nests is linked to stimulation of truffle mycelia previously established in soil or to changes generated in soil fungal community. To assess this, we used real-time PCR to quantify black truffle extraradical mycelium during 2 years after nests installation. We also characterized the fungal community via high-throughput amplicon sequencing of the ITS region of rRNA genes. We found that neither the abundance of truffle mycelium in nests nor in the soil-nest interphase was higher than in the bulk soil, which indicates that nests do not improve mycelial growth. The fungal community in nests showed lower richness and Shannon index and was compositionally different from that of soil, which suggests that nests may act as an open niche for fungal colonization that facilitates truffle fruiting. The ectomycorrhizal fungal community showed lower richness in nests. However, no negative relationships between amount of truffle mycelium and reads of other ectomycorrhizal fungi were found, thus countering the hypothesis that ectomycorrhizal competition plays a role in the nest effect.


Assuntos
Ascomicetos , Micobioma , Micorrizas , Microbiologia do Solo , Ascomicetos/fisiologia , Solo
20.
Plant Sci ; 335: 111678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385384

RESUMO

Rosa chinensis is an important economic and ornamental crop, but powdery mildew greatly reduces its ornamental and economic value. The RcCPR5 gene, encoding a constitutive expressor of pathogenesis-related genes, has two splicing variants in R. chinensis. Compared with RcCPR5-1, RcCPR5-2 has a large C-terminal deletion. During disease development, RcCPR5-2 responded quickly and coordinated with RcCPR5-1 to resist the invasion of the powdery mildew pathogen. In virus-induced gene silencing experiments, down-regulation of RcCPR5 improved the resistance of R. chinensis to powdery mildew. This was confirmed to be broad-spectrum resistance. In the absence of pathogen infection, RcCPR5-1 and RcCPR5-2 formed homodimers and heterodimers to regulate plant growth; but when infected by the powdery mildew pathogen, the RcCPR5-1 and RcCPR5-2 complexes disassociated and released RcSIM/RcSMR to induce effector-triggered immunity, thereby inducing resistance to pathogen infection.


Assuntos
Ascomicetos , Rosa , Proteínas de Plantas/genética , Rosa/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Erysiphe , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...